
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

 

 
Classification of Single Cell Types During Leukemia 

Therapy using Artificial Neural Networks 
 

 

 Minjie LYU; Milena RADENKOVIC; Derin B. KESKIN; Vladimir BRUSIC  

 



 

 

University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo, 

315100, Zhejiang, China. 

 

First published 2021 

 

This work is made available under the terms of the Creative Commons 

Attribution 4.0 International License: 

http://creativecommons.org/licenses/by/4.0   

 

The work is licenced to the University of Nottingham Ningbo China 
under the Global University Publication Licence: 
https://www.nottingham.edu.cn/en/library/documents/research-
support/global-university-publications-licence-2.0.pdf  

 

 

 

 

 

 

 

 

http://creativecommons.org/licenses/by/4.0


 

Classification of Single Cell Types During 

Leukemia Therapy using Artificial Neural Networks 
 

Minjie LYU 

School of Computer Science  

University of Nottingham  

Ningbo China 

minjie.lyu@nottingham.edu.cn 

 

Milena RADENKOVIC 

School of Computer Science  

University of Nottingham  

Nottingham UK 

milena.radenkovic@nottingham.ac.uk 

 

 

Vladimir BRUSIC  

School of Computer Science  

University of Nottingham  

Ningbo China 

vladimir.brusic@nottingham.edu.cn  

 Derin B. KESKIN 

Dana-Farber Cancer Institute 

Harvard Medical School 

Boston USA 

Derin_Keskin@dfci.harvard.edu 

 

 

Abstract—We trained artificial neural network (ANN) 

models to classify peripheral blood mononuclear cells (PBMC) 

in chronic lymphoid leukemia (CLL) patients. The classification 

task was to determine differences in gene expression profiles in 

PBMC pre-treatment (with ibrutinib) and on days 30, 120, 150, 

and 280 after the start of treatment. Twelve datasets 

represented clinical samples containing a total 48,016 single cell 

profiles were used to train and test ANN models to classify the 

progress of therapy by gene expression changes. The accuracy 

of ANN classification was >92% in internal cross-validation. 

External cross-validation, using independent data sets for 

training and testing, showed the accuracy of classification of 

post-treatment PBMCs to more than 80%. To the best of our 

knowledge, this is the first study that has demonstrated the 

potential of ANNs with 10x single cell gene expression data for 

detecting the changes during treatment of CLL. 

Keywords—ANN, PBMC, CLL, ibrutinib, scRNAseq, 

Machine Learning 

I. INTRODUCTION 

 Peripheral blood mononuclear cells (PBMC) represent 
mixed subpopulations of blood cells. PBMC are composed of 
5 cell types: B cells, T cells, Natural Killer (NK) cells, 
monocytes, and dendritic cells (DC) [1]. The proportions of 
PBMCs subtypes vary between individuals and change over 
time. In healthy individuals, the frequencies of PBMC cell 
types fit within broadly defined ranges: B cells are 5-15%, 
monocytes are 10-30%, DC are 1-2%, NK are 5-10%, and T 
cells are 40-70% of total PBMC [1,2]. PBMCs are widely used 
in the study of the immune system, infectious diseases, and 
vaccine development. PBMC are used in medical diagnosis 
for many diseases, including cancer, pulmonary fibrosis, viral 
hepatitis, and many others [3-6]. PBMC cell types and sub-
types have well-defined gene expression profiles that are very 
similar between healthy individuals. These observations were 
made both by using bulk sequencing [7,8] and by the study of 
single cell transcriptomes [9]. 

Traditional bulk RNA sequencing can only measure the 
expression value of each gene as an average of expression 
levels across the whole sample [8]. In contrast, single-cell 
transcriptome technologies (SCT) measure the expression 
levels of genes from individual cells. SCT provides a higher 
resolution of transcriptome measurements than bulk RNA 
sequencing. However, the profiles of individuals are sparse 
and cover only a fraction of true gene expression. Among the 

main challenges in single cell gene expression analysis are the 
lack of standard data sets, manual annotation of results due to 
the use of unsupervised machine learning tools, very large 
expression matrices, and sparsity of data in expression 
matrices [10].  

Chronic Lymphocytic Leukemia (CLL) is a common type 
of leukemia in adults which usually slowly grows and can 
remain asymptomatic for years. Approximately 95% of CLL 
is the malignancy of B cells, while the remainder is of T-cell 
type. The diagnosis of CLL is based on the identification of 
abnormal populations of B lymphocytes in the blood, bone 
marrow, spleen, and lymph nodes [11]. Functional and 
molecular abnormalities are often characterized by changes in 
gene expression that varies by CLL subtype and the tissue 
distribution of CLL cells [11]. 

Ibrutinib is a small molecule drug that binds protein BTK 
expressed by B cells, alters cellular signaling that promotes 
CLL survival and spread, resulting in changes of immune 
microenvironment in CLL [12,13]. Although CLL is a highly 
heterogeneous disease, ibrutinib has been demonstrated as an 
effective treatment with an excellent safety profile and does 
not cause myelosuppression. In a recent study, SCT gene 
expression was measured in CLL patients before and during 
ibrutinib therapy [14]. Data analysis in the ibrutinib study was 
performed using unsupervised machine learning methods, 
namely principal component analysis, t-SNE analysis, 
hierarchical clustering, and differential expression analysis 
[14]. 

SCT reveals cellular patterns of individual cells, but 
current analysis options have limitations. Single cell gene 
expression analysis by 10x SCT technology [15] produces 
large matrices. A typical study will produce large matrices that 
have more than 30,000 rows representing features (genes) and 
tens of thousands of columns representing individual single 
cell profiles. These individual profiles are sparse – in any one 
individual cell profile, 95-99% of features are typically zeros. 
It means that two nearly identical cells may have very 
different individual profiles. Current analytical tools mainly 
focus on unsupervised machine learning methods. These 
methods do not scale up well as they require progressively 
higher computer power to analyze data combined from 
multiple studies. They also do not generalize well – they are 
not accurate when applied to data sets from other studies [16].  

We developed a standardized format of the SCT matrices 
and deployed supervised machine learning to SCT data. The 
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SCT data sets of the treatment course from multiple patients 
were standardized and used to trained artificial neural 
networks (ANN) to classify PBMC in CLL samples treated by 
ibrutinib. Several research questions were pursued in this 
study: 

• Can we train an ANN on a set of data extracted from 

PBMC from unrelated CLL patients and accurately 

classify whether they were treated by Ibrutinib or not? 

• Can we train ANN models to predict the treatment 

periods? 

• Is it possible to generate accurate prediction models 

without feature selection or dimensionality reduction? 

II. MATERIALS AND METHODS 

A. Data 

 Data were extracted from the NCBI Gene Expression 

Omnibus (GEO) database [15]. The sources of our data are 12 

sample IDs GSM3020393, GSM3020394, GSM3020395, 

GSM3020396, GSM3020397, GSM3020398, GSM3020399, 

GSM3020400, GSM3020401, GSM3020402, GSM3020403, 

and GSM3020404. These data consist of expression matrices 

and metadata reported in [14]. The metadata contains 

descriptions of samples and experimental conditions. PBMC 

were obtained from 4 CLL patients  (patients 1, 5, 6, and 8) 

before treatment (day 0) and on days 30 and 120. Patient 5 had 

a sample collected on day 150 instead of day 120, and patient 

6 had an additional sample taken on day 280. We cleaned, 

labeled, and converted these data sets to a standardized format.  

For binary classification, we labeled the data sets as pre- and 

post-treatment. The pre-treatment data sets were from day 

zero samples (before treatment). The post-treatment data sets 

were from samples taken on days 30, 120, 150, and 280 

(during and after the treatment). For multi-class-classification, 

we labeled data as 0_day, 30_day, 120_day, 150_day, and 

280_day. The number of datasets indicating classes and 

patients is shown in TABLE I. The total number of cells we 

used in this study is 48,016; the breakdown of cell numbers by 

sample collection days are shown in Table II. 

TABLE I.  THE NUMBER OF DATASETS USED IN THIS STUDY 

Cell type 
Number of Datasets 

Patient 1 Patient 5 Patient 6 Patient 8 Total 

0 day 1 1 1 1 4 

30 day 0 1 1 1 3 

120 day 1 0 1 1 3 

150 day 0 1 0 0 1 

280 day 0 0 1 0 1 

Total 2 3 4 3 12 

TABLE II.  TOTAL NUMBER OF CELLS AVAILABLE FOR THIS STUDY 

Cell type 
Total Number of Cells 

Patient 1 Patient 5 Patient 6 Patient 8 Total 

0 day 2,775 6,655 3,391 2,186 15,007 

30 day 0 7,172 5,771 965 13,908 

120 day 3,827 0 2,200 2,330 8,357 

150 day 0 6,041 0 0 6,041 

280 day 0 0 4,703 0 4,703 

Total 6,602 19,868 16,065 5,481 48,016 

The genes across all data sets for our analysis were 
mapped to the genomic build GRCh38 patch release 12 
(GRCh38.p12) [17]. Each standardized data set in this study 
contains 31,217 genes. Sparse matrices have 31,217 rows 
corresponding to each feature, while the number of columns 
(single cells) ranges from 965 to 7,172 across all data sets. We 
divided the data sets into training and testing sets. For train-
test cycles 1 and 2, each data set was randomly divided into 
10 partitions for internal cross-validation (described later in 
the text). For the train-test cycle 3, the training and testing sets 
were combined so that the training and test sets are from 
different patients. 

B. Artificial Neural Networks 

In the first part of the study we trained a fully connected 
feed-forward ANN with 31,217 input units, one 10-nodes 
hidden layer, and 2 output units for binary classification (pre- 
and post-treatment) – architecture 31217-10-2. For the second 
part of the study, we trained a network with architecture 
31217-10-5 (multi-class temporal classification). For neural 
network implementation, we used the multi-layer perceptron 
classifier MLPClassifier from python library scikit-learn. The 
activation function for hidden nodes was logistic sigmoid 
function (Logistic), 𝑓(𝑥) = 1/(1 +  𝑒𝑥𝑝−𝑥). The model was 
trained with a maximum of 300 iterations. A first-order 
gradient-based optimization Adam algorithm [18] was used 
for training the network. The initial learning rate was 10−3. 
Other parameters included early stopping, and 10% of the 
training data was used. The training stopped when the 
accuracy of the model assessed by validation data did not 
improve for > 10 iterations. 

C. Study Design 

The study design involves three cycles of training and 
testing designed to answer different research questions and 
assess the generalization properties of the ANN models. The 
train-test cycles were: 

Cycle 1: Train ANN using data before treatment and data 
after treatment labeled as ‘Pre’ and ‘Post’ and test using 10-
fold cross-validation (internal cross-validation). 

Cycle 2: Train ANN using data before treatment and data 
after treatment labeled as ‘0_day’, ‘30_day’, ‘120_day’, 
‘150_day’ and ‘280_day’, test using 10-fold cross-validation 
(internal cross-validation) 
 Cycle 3: Train ANN using data before treatment, after 30 
days of the start of treatment, after 120 days, after 150 days, 
and after 280 days. Because there is only one data set for days 
150, 80% of this data was used for training and 20% for 
testing. The same procedure was used with 280 days data set. 

D. Assessment of Performance 

We made confusion matrices and calculated the Precision, 
Recall, and overall Accuracy using expressions: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑐𝑒𝑙𝑙𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
        𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹1 =  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 , where 

TP is the number of true positives, FP is the number of 
false positives, and FN is the number of false negatives. 
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III. RESULTS 

A. Incremental Training Results 

The ANN with the training set was trained using more than 
36,000 training instances in each of the three cycles. The 
training usually took between 70 and 80 epochs (iterations) 
before stopping. A typical learning curve displaying the 
changes in loss with respect to the number of epochs is shown 
in Fig. 1. ANN training cycles showed convergence, usually 
after 60 to 70 epochs. 

B. Internal Cross-Validation 

10-fold cross-validation was performed in cycle 1 and 

cycle 2. The overall internal cross-validation results showed 

very high accuracy. Cycle 1, the binary classification, had 

96.67% of correctly classified instances; 6.2% of post-

treatment cells were misclassified as “Day 0” and 2.1% pre-

treatment cells were misclassified as not “Day 0”, (Fig. 2). 

Cycle 2 had 95.42% correctly classified instances. In cycle 2, 

4.43% of 0_day cells, 3.87% of 30_day cells, 7.16% of 

120_day cells, 4.6% of 150_day cells, and 3.44% of 280_day 

cells were misclassified. The highest misclassified rate was for 

0_day (1.8% of experimental 0_day cells classified as 30_day 

cells), 30_day (2.1% of 30_day cells classified as 120_day 

cells), 120_day (3.3% of 120_day cells classified as 30_day 

cells), 150_day (1.8% of 150_day cells classified as 30_day), 

and 280_day (2.9% of 280_day cells classified as 120_day) 

(Fig. 3). These results were confirmed by additional 

classification performance metrics shown in Fig. 4. The best 

performance determined by internal cross-validation was for 

days 0 and 280 (F1>0.96 in both cases). The performance for 

days 30 and 150 was good (F1>0.95). The lowest performance 

was observed for days 120 (F1=0.92).  

The internal cross-validation results indicate that ANN 

learning is effective when combining multiple treatment 

periods and cell data sets, even if they were collected from 

different patients. Those datasets are randomly split and a 

period cell from the same patient is represented in both 

training and testing sets; the misclassification rate for any 

treatment periods is lower than 7%. 

 

 

Fig. 1. A representative ANN training cycle in our study. Training stopped 

after 10 cycles of no improvement of the Loss function. 

 

 

Fig. 2. Confusion matrix for Day 0 cycle 1, raw and normalized. 

 

Fig. 3. Normalized confusion matrix for Days 0, 30, 120, 150, and 280, 

cycle 2. 

C. Prospective Validation 

After demonstrating that ANN can accurately classify 
different treatment periods in the training set (not identical to 
the cell instances in the test set), we explored the 
generalization ability of training models. The process included 
using samples from one patient for testing, and samples from 
all other patients for training. 

In cycle 3, we trained ANN using patient 1 (0 day, 120 
day), patient 5 (0 day, 30 day, 150 day), patient 6 (30 day, 120 
day 280 day) and used patient 6 (0 day), patient 8 (0 day, 30 
day, 120 day) for testing. 

The same model that could make highly accurate 
predictions using internal cross-validation (Cycle 2) could not 
predict previously unseen data sets with similar accuracy as in 
prospective validation. The accuracy of predictions in Cycle 3 
was 67.14% for the ANN with 10 hidden layer nodes, 72.56% 
for ANN with 20 hidden layer nodes, and 70.9% for ANN 
with two hidden layers; none of the periods' cells showed 
useful prediction (150_day and 280_day using internal cross-
validation because of the shortage of data sets) (Fig. 4, and 
Fig. 5). These results are fascinating – the classification results 
of day 30 shows that 80% of cells are classified as post-
treatment cells. Day 120 shows that more than 89% of PBMC 
are classified as post-treatment.  

 

 

Fig. 4. Results of 5-Class classification for cycle 2, assessed by internal 

cross-validation. 

 

Fig. 5. Confusion matrix in cycle 3. The results for days 150 and 280 are 
only indicative because the assessment for these days was done using internal 

cross-validation. 
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IV. CONCLUSION AND DISCUSSION 

 We performed a cyclical refinement of ANN models by 
combining data collected from multiple patients for prediction 
of treatment periods. We achieved an overall accuracy of 
classification Acc>92% in internal cross-validation. These 
results indicate that ANN classification models are useful and 
show potential for clinical applications. Specifically, these 
results indicate that it is possible to follow-up an individual 
patient in a longitudinal study and observe the effects on 
therapy as early as 30 days after the start of therapy. These 
results indicate that ANN applied to single cell data can 
identify changes in PBMC due to the treatment in leukemia 
patients. 

The analysis of predictive models using external cross-
validation indicates that ANN models developed on data sets 
from other patients are also useful as they identify changes due 
to treatment in >80% of the cells. These observations are 
significant because they indicate that biological processes 
resulting from ibrutinib therapy are similar in different 
patients and can classify PBMC with accuracy that has 
practical significance, even on previously unseen data. We 
speculate that it is possible to observe the effect of the therapy 
even earlier, perhaps after 15 days. The analysis of differences 
between time points before, during, and after therapy, 
therefore, may be used to assess both the efficiency and the 
effectiveness of the therapy. Further analyses using data from 
more patients are needed to corroborate this hypothesis. 
 We observed that ANN with 20 hidden layer nodes was 
more sensitive in detecting post-treatment cells than other 
architectures. This indicates that the optimization of ANN 
architecture may be useful in improving the classification of 
PBMC cells after treatment. This can be useful for the early 
assessment of the effects of therapy. 
 In this study, we applied supervised machine learning, 
using ANN models, to classify data sets from SCT data 
multiple unrelated patients to predict the changes in PBMC of 
CLL patients treated by ibrutinib. ANNs were successfully 
used before in the diagnosis of CLL and other leukemias by 
using gene expression markers [19,20]. To the best of our 
knowledge, this is the first study that has demonstrated the 
usefulness of ANNs for detecting the changes during 
treatment of CLL with 10x single cell gene expression data. 
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